Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem services, we conducted a study in controlled conditions to examine the potential of adding three annual summer CCs species: common buckwheat (Fagopyrum esculentum), sunflower (Helianthus annuus L.), and sunn hemp (Crotalaria juncea L.) as monocultures growing in two representative soil types of the citrus region in Texas, and receiving one of these irrigation volumes based on calculated daily water losses [i.e., evapotranspiration (ET)] corresponding to 100, 75, 50, and 25% field capacity replenishment. Sunflower and sunn hemp produced the highest aboveground dry matter, which was on average 338 and 342% greater than buckwheat. Sunn hemp emerged faster than the other CCs, and mortality was relatively uniform across CCs, but buckwheat exhibited the highest sensitivity to drought and heat distress. Sunn hemp exhibited superior aboveground biomass accumulation, height, and chlorophyll content. All CCs performed similarly in both experimental soils, under native fertility conditions, and without the addition of mineral fertilizers. Irrigation at 75 and 100% ET levels were conducive to enhanced plant growth, which indicates that a minimum of 86.4 mm (75% ET) is required during CCs lifespan, but sunn hemp and sunflower were also capable of tolerating medium (50% ET) drought stress. Overall, our findings suggest that sunflower and sunn hemp exhibited traits desirable for incorporation as CCs to a perennial citrus production system. The primary benefit was the addition of organic matter with minimum management; however, both CCs’ performance was dependent on planting timing, successful early establishment, and favorable environmental conditions.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Li, Chengfang (Ed.)Irrigation is important in many crop production systems. However, irrigation water can be a carrier of plant pathogens that can enter the system and spread to fields, resulting in crop damage and yield losses. The Lower Rio Grande Valley of South Texas is an important area for agricultural production which depends on the Rio Grande River as a source of water for irrigation. Thus, the presence of plant pathogens in the Rio Grande River could have important implications for crop productivity in the region. Cultured-based methods and molecular identification methods are used for monitoring plant pathogens in irrigation water. However, these methods are labor-intensive and just detect targeted pathogens. To overcome these limitations, in this study, the ITS2 amplicon metagenomic method was applied for evaluating the fungal diversity, composition, and presence of fungal plant pathogens in irrigation water from the Rio Grande River as it leaves the water reservoir (WR) and it arrives at an irrigation valve at a farm (FA). Results from the Shannon (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) and Simpson indices (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) showed that there are significant differences in the fungal diversity and community structure between the two locations and the PCA analysis showed a clear differentiation between both fungal communities. Several OTUs identified in both locations included potential plant pathogens from diverse genera including Cladosporium, Exserohilum, and Nigrospora, while others such as Colletotrichum and Plectosphaerella were found only in one of the two locations assessed. This work indicates that microbes, including plant pathogens, may enter or exit throughout the irrigation-water distribution system, thereby modifying the microbial community composition along the way. Understanding the dynamics of plant pathogen movement in irrigation water systems can help growers identify risk factors to develop measures to mitigate those risks. This study also shows the usefulness of the metagenomic approach for detecting and monitoring plant pathogen in irrigation water.more » « less
-
Abstract Hydrochemical characteristics of irrigation water and their spatiotemporal variations can provide critical information for ensuring healthy crop growth and determining the best water management practices. The Lower Rio Grande Valley (LRGV) is heavily dependent upon ditch irrigation to deliver water from the Rio Grande River to support its staple crop production. To date, no studies have been conducted to quantify the water quality and its variations along the distribution system. This research measured water quality parameters at seven sites in LRGV irrigation water in 2021. Chemical indices including salinity hazard (SH), sodium adsorption ratio (SAR), sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), Kelly's Ratio (KR), and permeability index (PI) were calculated. Classification diagrams were prepared. Results revealed the locations that had doubtful water for irrigation use and more problematic water quality index levels. June and August had the highest index levels, which may have been attributable to the large rainfall events in May and July. The SH, Na%, KR, and MH indices exceeded recommended levels. ANOVA analyses showed significant temporal variations in SAR, RSC, MH, KR, and PI. These findings indicate the importance of incorporating water quality spatiotemporal variation information in routine irrigation planning and management.more » « less
An official website of the United States government
